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Jadranska 19, SLO-1111 Ljubljana, Slovenia

Received 9 December 1997, in final form 2 March 1998

Abstract. We extend our recent study of diffusion in strongly chaotic systems (‘the random
model’) to the general systems of mixed-type dynamics, including especially KAM systems,
regarding the diffusion in chaotic components. We do this by introducing a Poissonian model
as in our previous random model describing the strongly chaotic systems, except that now we
allow for differenta priori probabilities in different cells of the discretized phase space (surface
of section). Thus the concept of greyness (of cells), denoted byg, such that 06 g 6 1,
is introduced, as is its distributionw(g). We derive the relationship between the dynamical
property, namely the (normalized) fraction of chaotic componentρ(j) as a function of discrete
time j , andw(g). We predict again the universal scaling law, namely that for anyw(g), the
chaotic fractionρ(j) is a function ofj/N only, and not separately ofj andN , whereN is the
number of cells of equal size 1/N . The random model of exponential 1− ρ(j) = exp(−j/N)
is reproduced if all cells haveg = 1, i.e.w(g) = δ(1− g). We argue that in two-dimensional
systems, at any finiteN , w(g) is non-trivial due to the fractal dimension of the boundary of the
chaotic component, but is such that it goes toδ(1−g) asN →∞, whilst in systems with three
or more degrees of freedomw(g) has a well defined limit with non-zero values also atg < 1.
This is due to the existence of the Arnold web. We suggest how—through our formalism—one
can calculate the Lebesgue measure of the chaotic component at each finite discretization, whose
limit exists forN →∞. Our findings are verified and illustrated for two- and three-dimensional
billiards.

In this work we put forward a method of calculating the Lebesgue measure of chaotic
components in Hamiltonian systems of mixed-type dynamics. We divide the phase space
(actually the surface of section (SOS)) into a sufficiently large number of cells of equal
relative measure, such that the number of cells containing points of the chaotic component
is equal toN , and each cell has the relative Lebesgue measure equal toa = 1/N . We
assume thatN is sufficiently large, although this is not a very essential assumption. We
start an orbit in one of the cells, follow the discrete orbit as it evolves with the discrete
time j (= number of iterations of the Poincaré mapping on the SOS), and calculate the total
relative Lebesgue measure of the cells visited up to the timej , denoted byρ2(j). We refer
to the limiting value (asj → ∞) of this quantity asthe discrete measureof the chaotic
component. By construction it is based on box counting. We ask the question: Under
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what conditions is the limiting valueρ2(∞) equal or close to the relative Lebesgue measure
of the chaotic component? Clearly, in two degrees of freedom we expect convergence of
ρ2(∞) to the Lebesgue measure asN →∞. However, the convergence can be very slow
when the fractal dimension of the boundary of the chaotic region is large, namely close to
two. In fact, this very circumstance is quite typical. In three or more degrees of freedom
there exists the Arnold web (Chirikov 1979), which is dense in the phase space and on the
SOS, and therefore at anyN each cell contains some points of the Arnold web (= chaotic
component), so that in three or more degrees of freedom wealways haveρ2(∞) = 1 for
any N , implying that the discrete measure of the chaotic component is one for anyN .
So, in this case the difficult question arises as to how to measure/determine the Lebesgue
measure of the (connected) chaotic region (Arnold web). In KAM-type systems we know
that the relative Lebesgue measure of the chaotic component must be less than one, because
the KAM theorem guarantees that the measure of invariant tori is not only larger than
zero, but is even close to one, such that the measure of the complement (excluded by the
KAM inequality) goes to zero with the perturbation parameter. We offer an answer to this
question and develop the method of how to achieve this. In the following we shall denote
the normalized discrete measure as a function of discrete timej by ρ(j) = ρ2(j)/ρ2(∞).
Thus, by constructionρ(j)→ 1 asj →∞.

First we make some of the above statements more precise. Hamiltonian systems with
mixed-type dynamics are generic, the most typical, and therefore the most important ones.
They are well described by the KAM scenario. It is the KAM theorem mentioned above
that proves that the set of invariant tori has positive measure, whose complement is small
with the perturbation parameter (Kolmogoroff 1954, Arnold 1963, Moser 1962, Benettin
et al 1984, Gutzwiller 1990). However, it (the KAM theorem) does not make any statement
about the initial conditions that belong to the complementary set which is born out of not
sufficiently irrational tori of the integrable part. Typically, the orbits there are chaotic and
their chaoticity could be defined and identified by the positivity of the largest Lyapunov
exponent, which is certainly sufficient but not a necessary criterion†. The fundamental
open problem in the mathematics of nonlinear dynamical systems with mixed dynamics
is to prove that the chaotic component has in fact positive measure. This is the so-called
coexistence problem. For a nice exposition see the review paper by Strelcyn (1991).

We can define a chaotic component as the set containing a dense chaotic orbit, which is
thus assumed to be an indecomposable invariant component (topologically transitive). The
quantity we seek is the (relative) Lebesgue measure of the chaotic component. Clearly, the
closure of a chaotic component has the relative Lebesgue measure equal to unity in three
or more degrees of freedom, because the Arnold web is dense in phase space, whilst in two
degrees it can be smaller than one.

In physics we have no serious doubts about the positivity of the measure of the chaotic
component, relying on heuristic arguments, suggesting that we actually assume positivity.
The highly non-trivial question is then how to (numerically) calculate the symplectic
(invariant and ergodic) Lebesgue measure of the chaotic component.

We have approached this problem in a recent extensive work (Robniket al 1997,
henceforth referred to as (I)), where we have developedthe random model: each cell (of
relative Lebesgue measurea = 1/N , whereN is the number of cells containing the points of
a dense chaotic orbit) can be visited randomly, without any correlations (with the previous
visits) whatsoever, with the samea priori probabilitya. The result is, for sufficiently large

† For example, in non-rational plane polygonal billiards all Lyapunov exponents are strictly zero (Sinai 1976),
and yet they can be ergodic. Strong evidence for this has recently been published by Artusoet al (1997).



Letter to the Editor L347

N , but at fixed and finitej/N , that the relative discrete measure of the visited cellsρ(j) is
exponentially approaching its limiting value unity,

ρ(j) = 1− exp(−j/N). (1)

In (I) we have given the exact solutions of this random model for anyj andN ; however,
the approach to the exponential law given above with increasingN is very fast. In such a
case we observe the scaling law, namely thatρ(j) is a function ofj/N only, and thus does
not depend onj or N separately. In (I) we have also calculated the second momentS(j)

and the dispersionσ 2(j). The generalized results will be given in the following.
In this work we generalize the ideas and the model by introducing the concept of

greyness of the cells: each cell has a certain greynessg, by definition 06 g 6 1, which
is proportional to thea priori probability of visiting the cell, and thus it is proportional
to the relative occupancy number for the cell in the limitj → ∞. This is the only
modification of the random model, because we keep on assuming the complete lack of any
correlations between the visits of cells, thus assuming a Poisson model with differenta priori
probabilities of visiting different cells. We shall refer to this model asthe generalized
random model, or the general Poissonian model.

By w(g) we denote the greyness distribution of cells, assuming that it is defined for any
N . Thusw(g) dg is the probability that a given cell has greyness in the interval(g, g+ dg).
Of course,w(g) is a normalized probability distribution,

∫ 1
0 w(g) dg = 1.

For sufficiently large timej we then have that the average occupancy numbern(g) in
a cell of greynessg is proportional tog,

n(g) = αg (2)

whereα is the proportionality factor to be determined. Furthermore, the number of visits
1j that fall in the cells of the greyness interval1g is simply given by

1j

1g
= jw(g) (3)

and thus it is proportional toj , for large enoughj . Our first fundamental equation is then

j =
∑
1g

n(g)
1j

1g
1g (4)

where we sum up over all greyness intervals1g. Using the above equations (which are in
fact definitions), and going over to the infinitesimal intervals dg, we obtain the integral

α

∫ 1

0
gw(g) dg = 1 (5)

which determines the value ofα, and is equivalent to normalizing the average occupancy
numbern(g). Thusn(g)/N is identified with thea priori Poissonian probability for a cell
of greynessg.

Now we want to calculate the expected numberN̄0 of non-occupied cells. In each
greyness interval1g we havew(g)N1g cells. The mean number̄m of visits in a cell of
such a greyness interval is

m̄ = jn(g)

N
. (6)

Now the assumption of Poissonian statistics implies immediately that the probability of
havingm visits in a cell within the given greyness interval with the average number of
visits m̄ is equal to

P(m, m̄) = e−m̄
m̄m

m!
(7)
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and therefore, in particular,

P(0, m̄) = e−m̄ = exp

(
−jn(g)

N

)
. (8)

It is then obvious to write our second fundamental equation

N̄0 =
∑
1g

P (0, m̄)Nw(g)1g (9)

which in the limit1g→ 0 becomes the integral

N̄0 =
∫ 1

0
dgNw(g) exp

(
− j

N
αg

)
(10)

and therefore our expected measure of occupied cells, equal toρ = 1− N̄0/N , as a function
of j/N only, becomes

ρ(j) = 1−
∫ 1

0
dgw(g) exp

(
−αj
N
g

)
(11)

which is the main result of this paper. Clearly, for anyw(g) we have the scaling law that
ρ(j) depends onj andN only throughj/N , but not separately.

As a first task we reproduce ourrandom model, for which we have no greyness, but
only black cells, i.e.N cells of equala priori probabilitya = 1/N , so thatg = 1 for all of
them andw(g) = δ(1− g). Integrating (11) yields exactly (1).

Now we consider the general case of non-trivialw(g). From the Laplace-like transform
relationship in (11) we see that the asymptotic behaviour ofρ(j) at largej is dictated by
those cells whose greynessg is small. These are of course exactly those cells which are
seldom visited. In systems with non-trivialw(g) we, therefore, expect some agreement with
the random model (1) for not too largej , whilst at very largej we can find a power law,
as will be demonstrated below in a two-dimensional (2D) billiard system. Indeed, ifw(g)

is a power law at smallg,

w(g) = Cg−β g→ 0 (12)

whereβ < 1 due to the integrability (normalizability) ofw(g), then 1− ρ(j) is also a
power law, 1− ρ(j/N) ∝ (j/N)−γ ,

ρ(j/N � 1) ≈ 1− C0(1− β)
(αj/N)1−β

(13)

so that we have the relation between the exponentsβ andγ ,

β + γ = 1 (14)

which can be, of course, phenomenologically (numerically) verified in specific systems (see
later).

Since our theory is a statistical model we must give an estimate of the expected statistical
fluctuations, i.e. of the dispersion. We do this by considering the situation wherej is
sufficiently large, j � N , such that the numbers of empty cellsN0 are uncorrelated
and therefore Poissonian distributed, with the expected valueN̄0, namely according to
the distributionP(N0, N̄0) of equation (7). Denoting by〈. . .〉 the statistical average using
the Poissonian distribution (7), we find at once that

〈N2
0 〉 − N̄2

0 = N̄0 (15)
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and then after integrating over all classes of greynessg, weighted byNw(g), using the
notationN1 = N −N0 for the number of occupied cells, we calculate

σ 2(j) =
〈(
N1

N

)2〉
−
〈
N1

N

〉2

(16)

and find

σ 2(j) = 1− ρ(j)
N

. (17)

This result agrees to leading order with that for the random model (see equation (15) in
paper (I), for sufficiently largej/N ).

Here the greyness distributionw(g) plays a key role in determining the behaviour
of ρ(j). It is a signature of a given chaotic component, at given discretizationN . In
fact, we shall give numerical evidence that in 2D systemsw(g) at finiteN behaves as in
equation (12), but such that asN →∞ it converges tow(g) = δ(1−g). In such a case the
relative Lebesgue measure and the discrete measure are identical, although the convergence
of the discrete measure to the Lebesgue measure withN might be slow, for example if the
fractal dimension of the boundary of the chaotic region is large, close to two. However, in
three or more degrees of freedom we have some genuine greyness even whenN →∞, due
to the Arnold web, and thus not every box at a given discretizationN contributes equally
to the Lebesgue measure, so that the limiting relative Lebesgue measure is less than one.
Indeed, each cell contributes to the relative Lebesgue measure only the fraction equal to its
greynessg, so that in general the relative Lebesgue measureµ is given by

µ = α−1 =
∫ 1

0
gw(g) dg (18)

and 06 µ 6 1 is satisfied. We have reached the important conclusion that by measuring
w(g) we can calculate the Lebesgue measure of a given chaotic component, at the given
discretizationN .

Now we turn to the interpretation of our results in billiard systems. In figure 1 we show
the results for the 2D billiard (Robnik 1983, Robniket al 1997 and references therein),
with the value ofλ = 0.15. We show the curvesρ(j) on a log–log plot for three different
values ofN , thereby also demonstrating the scaling law. (Here and in the following, also
in figures 1–4,N is the number of cells containing the chaotic orbit.) They follow the
exponential (random) law for smallj/N , but clearly exhibit power-law behaviour at large
j/N , with the exponentγ ≈ 0.53. In figure 2 we show the results for the same billiard at
the same three different values for the greyness distributionw(g), on a log–linear plot and
the inset with a log–log plot at smallg. We clearly observe the power-law behaviour (12)
with β ≈ 0.46, which is thus consistent with our theoretical relation (14). It is important to
realize that herew(g) contracts down to zero atg < 1, building up the delta function spike
w(g) = δ(1− g), eventually, in the limitN →∞. ThuswN(g) ∝ N−f , wheref = 2− d
and d is the fractal dimension of the boundary of the chaotic region. Namely, grey cells
g < 1 in 2D systems are only those that lie on the boundary of the chaotic component. The
exponent of this contraction is indeed observed to be roughlyf ≈ 0.3, which is consistent
with our estimate of the fractal dimension of the boundary of the chaotic region of about
d ≈ 1.7.

In figure 3 we show the analogous resultsρ(j) for the three-dimensional billiard (3D)
(Prosen 1997a, b, Robniket al 1997), fora = −0.1 andb = 0, which is a well pronounced
KAM regime. Here one should observe that the curvesρ(j) = ρ(j/N) converge to a single
curve, just because the greyness distributionw(g) has a limiting non-trivial shape, which
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Figure 1. 1−ρ(j) againstj/N on a log–log plot, for the 2D billiard (Robnik 1983,λ = 0.15),
for three different values of discretizationN , and also for comparison the theoretical curve of
the random model, namely exp(−j/N). It can be seen thatγ ≈ 0.53.

Figure 2. w(g) for the same system as in figure 1, at the same three different values ofN ,
after deconvolution. The smooth background ofw(g) clearly decays to zero, with the exponent
f ≈ 0.3. See the text for details. In the inset we show the same curves on a log–log plot. It
can be deduced thatβ ≈ 0.46.

can be seen in figure 4. Thus, in figure 3 we observe the validity of the general scaling law,
implied by (11), namely thatρ(j) is only a function of(j/N) but not separately ofj and
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N , providedw(g) exists in the limitN →∞. Again, perhaps we have here a power-law
behaviour, withγ ≈ 0.13, but this is not so reliably manifested as in the 2D case of figure 1.
There are five different values ofN . In figure 4 we show thew(g) plots for the same five
different values ofN . The most important observation here is that noww(g) does not
contract to zero atg < 1, but has a well defined smooth limit asN increases to infinity.
At small g we observe the power law withβ ≈ 0.48, which, however, is not in agreement
with relation (14). Further numerical work is necessary to determine this behaviour more
precisely, but the general relationship betweenρ(j) andw(g) described in equation (11) is
certainly confirmed.

Figure 3. 1−ρ(j) againstj/N on a log–log plot, for the 3D billiard (Prosen 1997a, b,a = −0.1,
b = 0), for five different values of discretizationN , and also for comparison the theoretical curve
of the random model, namely exp(−j/N). It can be seen thatγ ≈ 0.13.

In fact, to be precise, we have drawn in figures 2 and 4 not the raw data forw(g) but in
fact their values after deconvolution: we have identified the maximum peak of the raw data
with the valueg = 1, subtracted from the peak the smooth background and deconvolved the
peak data with the Poissonian spreading function. The final result, therefore, is a smooth
background ofw(g) for g < 1 and a delta spike atg = 1.

In conclusion, we have developed thegeneral Poissonian modelor the generalized
random model, which allows for differenta priori probabilities for visiting cells in the dis-
cretized phase space or surface of section. Thea priori probabilities are proportional to the
so-called greyness parameterg of the cells, and their distribution is the greyness distribution
w(g), which tells us how many cells there are in the interval (g, g+ dg). The consequence
of our model is the universal scaling law, which states that the relative discrete measureρ(j)

of the occupied cells on the chaotic component is a function ofj/N only, and thus does
not depend separately onj andN . We have also shown that the relative Lebesgue measure
µ of the chaotic component is given by the integralµ = ∫ 1

0 gw(g) dg. In 2D systemsw(g)
goes toδ(1− g), such that typically the smooth background goes to zero as a power law
wN(g) ∝ N−f , where the exponentf is 2−d andd is the fractal dimension of the boundary
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Figure 4. w(g) for the same system as in figure 3, at the same five different values ofN , after
deconvolution. The smooth background ofw(g) clearly converges to a non-zero limiting value
with increasingN . See the text for details. In the inset we show the same curves on a log–log
plot. It can be deduced thatβ ≈ 0.48.

of the chaotic component. Grey cellsg < 1 in 2D systems are namely those cells that lie on
the boundary of the chaotic region. In systems with three or more degrees of freedom we
have a non-trivialw(g), even in the limitN →∞, and thusw(g) is a certain ‘signature’
of the chaotic region. We have also given estimates of the expected statistical error. Thus,
we believe that our present work gives an excellent description of the diffusion in chaotic
regions of Hamiltonian systems with mixed dynamics, especially in KAM-type systems.

Another type of generalization of the random model will be dealt with in our next work,
namely the case of weakly-coupled chaotic components, where for each component we can
assume the applicability of the general Poissonian model. Examples include, for example,
weakly-coupled ergodic 2D billiards.

Both generalizations of the random model (Robniket al 1997, paper I) are improvements
in the understanding of the transport processes in Hamiltonian systems (MacKayet al 1984).
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Sinai Ya G 1976Introduction to Ergodic Theory(Princeton: Princeton University Press) p 140
Strelcyn J-M 1991Colloquium Math.LXII 331–45


